Telegram Group & Telegram Channel
Глубокое обучение, как зеркало сложных систем

«Никто не понимает, как работает глубокое обучение / нейронные сети / большие языковые модели» — слышали эту фразу? не смущает ли она вас? В нескольких постах разбираемся, что известно, а что нет.

В жизни нас окружает много сложных систем, поведение которых в будущем не может быть точно смоделировано (computationally irreducible complexity)  — наш мозг, иммунная система, финансовые рынки, климатические и экологические системы, социальные группы и многое другое. Иногда не хватает информации о начальных условиях, иногда для моделирования требуются невероятные вычислительные мощности, а иногда это даже теоретически невозможно (хаос, привет).

В отсутствии понимания внутренних правил системы, бывают накоплены наблюдения за ней — например, анамнез людей с травмами разных частей головы, показания погоды за несколько лет, журналы родильных домов по всему региону или сборник медицинских учебников. Вместе с наблюдениями иногда сформирована интуиция — пациенты с повреждениями левой фронтальной части мозга чаще других теряют способность говорить, вокруг Рождества особенно морозно, больше всего детей рождается летом, а подорожник быстрее заживляет раны. Корреляции не всегда верные, но достаточно устойчивые чтобы закрепиться как «житейская мудрость».

Большие нейронные сети (neural networks, NN) — сложные системы, состоящие из десятков миллиардов нейронов и выполняющие сотни миллионов операций с числами в секунду. В момент создания это полностью детерминированные объекты, магия начинается только после их “обучения”, во время которого сети показывают примеры другой сложной системы, например, текста. Если данных много (а chatGPT обучен на корпусе из ~ста миллиардов страниц текста), они высокого качества (литературы и научных статей больше, чем твиттера), и достаточно разнообразны (представлены разные языки, национальности, гендеры, политические взгляды), глядя на них нейронная сеть «обучится» хорошо и скопирует внутренние взаимосвязи построив свою собственную интуицию.

После обучения вся информация или “знания” NN распределённо хранятся в этих миллиардах нейронов, и хотя система не перестает быть строго детерминированной (каждое из чисел известно точно), из-за огромного количества их интерпретация сильно усложняется и становится похожа на исследование нашего мозга. Он тоже состоит из десятков миллиардов нейронов, правда иной природы. За всю историю развития нейронауки ученые объединили скопления нейронов в отделы, установили за какие функции они отвечают, но где именно рождается та или иная мысль в большинстве случаев неизвестно, а что такое сознание неизвестно вовсе.

В случае с текстом обучение, очевидно, работает. Современные большие языковые модели успешно построили собственные интуиции для человеческих языков. Является ли это “пониманием” написанного, и можно ли на таких механизмах построить “сознание”, это отдельный разговор, который в основном сводится к определению терминов. Но совершенно точно это является пониманием математической закономерности языка, скрытой от нашей человеческой интуиции. Наш мозг выполняет операции над образами а не числами, но удивительным образом эти два подхода приводят к очень близким результатам.

Вот и получается что одно сложное, которое вы контролируете полностью, имитирует поведение другого сложного, за которым наблюдало достаточно много раз. И несмотря на очень поверхностные наше представления о том, как именно это происходит, это сложное решает прикладные задачи и усложняется дальше. С другой стороны, человек довольно долго и успешно существовал совсем не понимая, как работает собственный мозг. Это должно обнадеживать

1. Визуальная демонстрация того как нейронные сети учатся
2. Что известно об устройстве GPT-4

#AI #DL #LLM #complexity



tg-me.com/levels_of_abstraction/19
Create:
Last Update:

Глубокое обучение, как зеркало сложных систем

«Никто не понимает, как работает глубокое обучение / нейронные сети / большие языковые модели» — слышали эту фразу? не смущает ли она вас? В нескольких постах разбираемся, что известно, а что нет.

В жизни нас окружает много сложных систем, поведение которых в будущем не может быть точно смоделировано (computationally irreducible complexity)  — наш мозг, иммунная система, финансовые рынки, климатические и экологические системы, социальные группы и многое другое. Иногда не хватает информации о начальных условиях, иногда для моделирования требуются невероятные вычислительные мощности, а иногда это даже теоретически невозможно (хаос, привет).

В отсутствии понимания внутренних правил системы, бывают накоплены наблюдения за ней — например, анамнез людей с травмами разных частей головы, показания погоды за несколько лет, журналы родильных домов по всему региону или сборник медицинских учебников. Вместе с наблюдениями иногда сформирована интуиция — пациенты с повреждениями левой фронтальной части мозга чаще других теряют способность говорить, вокруг Рождества особенно морозно, больше всего детей рождается летом, а подорожник быстрее заживляет раны. Корреляции не всегда верные, но достаточно устойчивые чтобы закрепиться как «житейская мудрость».

Большие нейронные сети (neural networks, NN) — сложные системы, состоящие из десятков миллиардов нейронов и выполняющие сотни миллионов операций с числами в секунду. В момент создания это полностью детерминированные объекты, магия начинается только после их “обучения”, во время которого сети показывают примеры другой сложной системы, например, текста. Если данных много (а chatGPT обучен на корпусе из ~ста миллиардов страниц текста), они высокого качества (литературы и научных статей больше, чем твиттера), и достаточно разнообразны (представлены разные языки, национальности, гендеры, политические взгляды), глядя на них нейронная сеть «обучится» хорошо и скопирует внутренние взаимосвязи построив свою собственную интуицию.

После обучения вся информация или “знания” NN распределённо хранятся в этих миллиардах нейронов, и хотя система не перестает быть строго детерминированной (каждое из чисел известно точно), из-за огромного количества их интерпретация сильно усложняется и становится похожа на исследование нашего мозга. Он тоже состоит из десятков миллиардов нейронов, правда иной природы. За всю историю развития нейронауки ученые объединили скопления нейронов в отделы, установили за какие функции они отвечают, но где именно рождается та или иная мысль в большинстве случаев неизвестно, а что такое сознание неизвестно вовсе.

В случае с текстом обучение, очевидно, работает. Современные большие языковые модели успешно построили собственные интуиции для человеческих языков. Является ли это “пониманием” написанного, и можно ли на таких механизмах построить “сознание”, это отдельный разговор, который в основном сводится к определению терминов. Но совершенно точно это является пониманием математической закономерности языка, скрытой от нашей человеческой интуиции. Наш мозг выполняет операции над образами а не числами, но удивительным образом эти два подхода приводят к очень близким результатам.

Вот и получается что одно сложное, которое вы контролируете полностью, имитирует поведение другого сложного, за которым наблюдало достаточно много раз. И несмотря на очень поверхностные наше представления о том, как именно это происходит, это сложное решает прикладные задачи и усложняется дальше. С другой стороны, человек довольно долго и успешно существовал совсем не понимая, как работает собственный мозг. Это должно обнадеживать

1. Визуальная демонстрация того как нейронные сети учатся
2. Что известно об устройстве GPT-4

#AI #DL #LLM #complexity

BY уровни абстракции


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/levels_of_abstraction/19

View MORE
Open in Telegram


LEVELS_OF_ABSTRACTION Telegram Group Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

LEVELS_OF_ABSTRACTION Telegram Group from sa


Telegram уровни абстракции
FROM USA